一、動力電池導熱膠
導熱膠應用在動力電池組裝中對動力電池性能和性,在多個方面發揮作用。導熱膠的使用目的大體分為四類:(1)固定、(2)傳熱、(3)阻燃、(4)防震,而導熱膠的具體使用形式主要為:(1)墊片、(2)灌封、(3)填充等。
氮化硼在熱設計中往往需要考慮電池充放電功率與發熱量和散熱能力之間的平衡問題。鋰電池的性能對溫度敏感,獲得適當的工作溫度,對充分發揮電池性能,維護合理電池壽命都有重要意義。合理選擇熱傳遞介質,不要考慮其熱傳遞能力,還要兼顧生產中的工藝、維護操作性、優良的性價比等因素。
二、導熱膠的組成與導熱機理
導熱膠主要由EP(環氧樹脂)、硅橡膠和PU(聚氨酯)等樹脂基體和導熱填料組成。導熱填料的種類、用量、幾何形狀、粒徑、混雜填充和改性等對導熱膠之導熱性能都有影響。
導熱膠的導熱原理:固體內部導熱載體主要為聲子或者電子(在介電體中,導熱是通過晶格的振動來實現的,晶格振動的能量是量子化的,這種晶格振動的量子稱為聲子)。無機非金屬晶體通過排列整齊的晶粒熱振動導熱,通常用聲子的概念來描述;由于非晶體可看成晶粒細的晶體,故非晶體導熱也可用聲子的概念進行分析,但其熱導率遠低于晶體;大多數聚合物是飽和體系,無自由電子存在,因此,在膠粘劑中加入高導熱填料是提高其導熱性能的主要方法。導熱填料分散于樹脂基體中,彼此間相互接觸,形成導熱網絡,使熱量可沿著“導熱網絡”迅速傳遞,從而達到提高膠粘劑熱導率的目的,如圖2所示。
三、六方氮化硼(h-BN)材料的特性
氮化硼(BN)是由氮原子和硼原子所構成的晶體。化學組成為43.6%的硼(B)和56.4%的氮(BN),具有四種不同的變體:六方氮化硼(H-BN)如圖3、菱方氮化硼(R-BN)、立方氮化硼(C-BN)和纖鋅礦氮化硼(W-BN)。其中六方氮化硼材料具有:
☆ 較高的機械強度、高熔點、高熱導率,
☆ 較好的摩擦系數,
☆ 良好的絕緣體,
☆ 六方氮化硼可以在空氣中經受住800℃的高溫,
☆ 六方氮化硼可以制備成類似石墨烯的二維結構,稱之為“白色石墨烯”,具有類石墨烯的優異性能。
因此,六方氮化硼是佳的導熱膠填充材料,目前被廣泛地應用于動力電池導熱膠領域。
一、動力電池導熱膠
導熱膠應用在動力電池組裝中對動力電池性能和性,在多個方面發揮作用。導熱膠的使用目的大體分為四類:(1)固定、(2)傳熱、(3)阻燃、(4)防震,而導熱膠的具體使用形式主要為:(1)墊片、(2)灌封、(3)填充等。
氮化硼在熱設計中往往需要考慮電池充放電功率與發熱量和散熱能力之間的平衡問題。鋰電池的性能對溫度敏感,獲得適當的工作溫度,對充分發揮電池性能,維護合理電池壽命都有重要意義。合理選擇熱傳遞介質,不要考慮其熱傳遞能力,還要兼顧生產中的工藝、維護操作性、優良的性價比等因素。
二、導熱膠的組成與導熱機理
導熱膠主要由EP(環氧樹脂)、硅橡膠和PU(聚氨酯)等樹脂基體和導熱填料組成。導熱填料的種類、用量、幾何形狀、粒徑、混雜填充和改性等對導熱膠之導熱性能都有影響。
導熱膠的導熱原理:固體內部導熱載體主要為聲子或者電子(在介電體中,導熱是通過晶格的振動來實現的,晶格振動的能量是量子化的,這種晶格振動的量子稱為聲子)。無機非金屬晶體通過排列整齊的晶粒熱振動導熱,通常用聲子的概念來描述;由于非晶體可看成晶粒細的晶體,故非晶體導熱也可用聲子的概念進行分析,但其熱導率遠低于晶體;大多數聚合物是飽和體系,無自由電子存在,因此,在膠粘劑中加入高導熱填料是提高其導熱性能的主要方法。導熱填料分散于樹脂基體中,彼此間相互接觸,形成導熱網絡,使熱量可沿著“導熱網絡”迅速傳遞,從而達到提高膠粘劑熱導率的目的,如圖2所示。
三、六方氮化硼(h-BN)材料的特性
氮化硼(BN)是由氮原子和硼原子所構成的晶體。化學組成為43.6%的硼(B)和56.4%的氮(BN),具有四種不同的變體:六方氮化硼(H-BN)如圖3、菱方氮化硼(R-BN)、立方氮化硼(C-BN)和纖鋅礦氮化硼(W-BN)。其中六方氮化硼材料具有:
☆ 較高的機械強度、高熔點、高熱導率,
☆ 較好的摩擦系數,
☆ 良好的絕緣體,
☆ 六方氮化硼可以在空氣中經受住800℃的高溫,
☆ 六方氮化硼可以制備成類似石墨烯的二維結構,稱之為“白色石墨烯”,具有類石墨烯的優異性能。
因此,六方氮化硼是佳的導熱膠填充材料,目前被廣泛地應用于動力電池導熱膠領域。